2021 Fall AMC 10A Problems/Problem 10

Revision as of 18:20, 22 November 2021 by MRENTHUSIASM (talk | contribs) (Solution)

Problem

A school has $100$ students and $5$ teachers. In the first period, each student is taking one class, and each teacher is teaching one class. The enrollments in the classes are $50, 20, 20, 5,$ and $5$. Let $t$ be the average value obtained if a teacher is picked at random and the number of students in their class is noted. Let $s$ be the average value obtained if a student was picked at random and the number of students in their class, including the student, is noted. What is $t-s$?

$\textbf{(A)}\ {-}18.5  \qquad\textbf{(B)}\  {-}13.5 \qquad\textbf{(C)}\  0 \qquad\textbf{(D)}\  13.5 \qquad\textbf{(E)}\ 18.5$

Solution

The formula for expected values is \[\text{Expected Value}=\sum(\text{Outcome}\cdot\text{Probability}).\] We have \begin{align*} t &= \frac15\cdot50 + \frac15\cdot20 + \frac15\cdot20 + \frac15\cdot5 + \frac15\cdot5 \\ &= \frac15\cdot(50+20+20+5+5) \\ &= \frac15\cdot100 \\ &= 20, \\ s &= \frac{50}{100}\cdot50 + \frac{20}{100}\cdot20 + \frac{20}{100}\cdot20 + \frac{5}{100}\cdot5 + \frac{5}{100}\cdot5 \\ &= 25 + 4 + 4 + 0.25 + 0.25 \\ &= 33.5. \end{align*} Therefore, the answer is $t-s=\boxed{\textbf{(B)}\  {-}13.5}.$

~MRENTHUSIASM