2022 AMC 12A Problems/Problem 12

Revision as of 12:43, 12 November 2022 by Jamesl123456 (talk | contribs)

Problem

Let $M$ be the midpoint of $AB$ in regular tetrahedron $ABCD$. What is $\cos(\angle CMD)$?

$\textbf{(A) } \frac14 \qquad \textbf{(B) } \frac13 \qquad \textbf{(C) } \frac25 \qquad \textbf{(D) } \frac12 \qquad \textbf{(E) } \frac{\sqrt{3}}{2}$

Solution

Let the side length of $ABCD$ be $2$. Then, $CM = DM = \sqrt{3}$. By the Law of Cosines, $$ (Error compiling LaTeX. Unknown error_msg)\cos(\angle CMD) = (CM^2 + DM^2 - BC^2)/(2CMDM) = \boxed{\textbf{(B)} \, \frac13}.