2022 AMC 10B Problems/Problem 23
Solution
We use the following lemma to solve this problem.
Let be independent random variables that are uniformly distributed on . Then for ,
For ,
Now, we solve this problem.
We denote by the last step Amelia moves. Thus, . We have $$ (Error compiling LaTeX. Unknown error_msg) \begin{align*} \Bbb P \left( \sum_{n=1}^\tau x_n > 1 \right) & = \Bbb P \left( x_1 + x_2 > 1 \bigg| t_1 + t_2 > 1 \right) \Bbb P \left( t_1 + t_2 > 1 \right) \\ & \hspace{1cm} + \Bbb P \left( x_1 + x_2 + x_3 > 1 \bigg| t_1 + t_2 \leq 1 \right) \Bbb P \left( t_1 + t_2 \leq 1 \right) \\ & = \Bbb P \left( x_1 + x_2 > 1 \right) \Bbb P \left( t_1 + t_2 > 1 \right) + \Bbb P \left( x_1 + x_2 + x_3 > 1 \right) \Bbb P \left( t_1 + t_2 \leq 1 \right) \\ & = \left( 1 - \frac{1}{2} \right)\left( 1 - \frac{1}{2} \right) + \left( 1 - \frac{1}{6} \right) \frac{1}{2} \\ & = \boxed{\textbf{(C) }} . \end{align*} $$ (Error compiling LaTeX. Unknown error_msg) where the second equation follows from the property that and are independent sequences, the third equality follows from the lemma above.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)