Kimberling’s point X(22)

Revision as of 16:06, 21 November 2022 by Vvsss (talk | contribs) (Created page with "==Exeter point X(22)== Exeter point is the perspector of the circummedial triangle <math>A_0B_0C_0</math> and the tangential triangle <math>A'B'C'.</math> By another words, le...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exeter point X(22)

Exeter point is the perspector of the circummedial triangle $A_0B_0C_0$ and the tangential triangle $A'B'C'.$ By another words, let $\triangle ABC$ be the reference triangle (other than a right triangle). Let the medians through the vertices $A, B, C$ meet the circumcircle $\Omega$ of triangle $ABC$ at $A_0, B_0,$ and $C_0$ respectively. Let $A'B'C'$ be the triangle formed by the tangents at $A, B,$ and $C$ to $\Omega.$ (Let $A'$ be the vertex opposite to the side formed by the tangent at the vertex A). Prove that the lines through $A_0A', B_0B',$ and $C_0C'$ are concurrent, the point of concurrence lies on Euler line of triangle $ABC.$

Proof

At first we prove that lines $A_0A', B_0B',$ and $C_0C'$ are concurrent. This follows from the fact that lines $AA_0, BB_0,$ and $CC_0$ are concurrent at point $G$ and Mapping theorem.

Mapping theorem

Transformation.png

Let triangle $ABC$ and incircle $\omega$ be given. \[D = BC \cap \omega, E = AC \cap \omega, F  = AB \cap \omega.\] Let $P$ be the point in the plane $ABC.$ Let lines $DP, EP,$ and $FP$ crossing $\omega$ second time at points $D_0, E_0,$ and $F_0,$ respectively.

Prove that lines $AD_0, BE_0,$ and $CF_0$ are concurrent.

Proof

\[k_A = \frac {\sin {D_0AE'}}{\sin {D_0AF'}} = \frac {D_0E'}{D_0A} \cdot \frac {D_0A}{D_0F'} =  \frac {D_0E'}{D_0F'}.\] We use Claim and get: $k_A =  \frac {D_0E^2}{D_0F^2}.$ \[k_D = \frac {\sin {D_0DE}}{\sin {D_0DF}} = \frac {D_0E}{2R} \cdot \frac {2R}{D_0F} =  \frac {D_0E}{D_0F} \implies k_A = k_D^2.\] Similarly, $k_B = k_E^2, k_C = k_F^2.$

We use the trigonometric form of Ceva's Theorem for point $P$ and triangle $\triangle DEF$ and get \[k_D \cdot k_E \cdot k_F = 1 \implies k_A \cdot k_B \cdot k_C = 1^2 = 1.\] We use the trigonometric form of Ceva's Theorem for triangle $\triangle ABC$ and finish proof that lines $AD_0, BE_0,$ and $CF_0$ are concurrent.

Claim (Point on incircle)

Point on incircle.png

Let triangle $ABC$ and incircle $\omega$ be given. \[D = BC \cap \omega, E = AC \cap \omega, F  = AB \cap \omega, P \in \omega, F' \in AB,\] \[PF' \perp AB, E' \in AC, PE' \perp AC, A' \in EF, PA' \perp EF.\] Prove that $\frac {PF'}{PE'} = \frac {PF^2}{PE^2}, PA'^2 = PF' \cdot PE'.$

Proof

\[AF = AE \implies \angle AFE = \angle AEF = \angle A'EE'.\] \[\angle EFP = \angle PEE' \implies \angle PFF' = \angle PEE' \implies\] \[\triangle PFF' \sim \triangle PEA' \implies \frac {PF}{PF'} = \frac {PE}{PA'}.\]

Similarly $\triangle PEE' \sim \triangle PFA' \implies \frac {PE}{PE'} = \frac {PF}{PA'}.$

We multiply and divide these equations and get: \[PA'^2 = PF' \cdot PE', \frac {PF'}{PE'} = \frac {PF^2}{PE^2}.\]

vladimir.shelomovskii@gmail.com, vvsss