2023 AMC 8 Problems/Problem 25

Revision as of 18:10, 24 January 2023 by Apex304 (talk | contribs)

$1\leq a_1\leq10$,

$13\leq a_2\leq20$,

$241\leq a_15\leq250$,

We can find the possible values of the common difference by finding the numbers which satisfy the conditions. To do this, we find the minimum of the last two–$241-20=221$, and the maximum–$250-13=237$. There are $13$ 7 differences between them, so only $17$ and $18$ work, as $17*13=221$, so $17$ satisfied $221\leq 13x\leq237$. The number $18$ is similarly found. $19$, however, is too much.

Now, we check with the first and last equations using the same method. We know $241-10\leq 14x\leq250-1$. Therefore, $231\leq 14x\leq249$. We test both values we just got, and we can realize that $18$ is too large to satisfy this inequality. On the other hand, we can now find that the difference will be $17$, which satisfies this inequality.

The last step is to find the first term. We know that the first term can only be from $1$ to $3$, since any larger value would render the second inequality invalid. Testing these three, we find that only $a_1=3$ will satisfy all the inequalities. Therefore, $a_14=13\cdot17+3=224$. The sum of the digits is therefore $\boxed{\text{(D)}11}$ -apex304, SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat