2020 CIME II Problems/Problem 8
Problem 8
A committee has an oligarchy, consisting of of the members of the committee. Suppose that of the work is done by the oligarchy. If the average amount of work done by a member of the oligarchy is times the amount of work done by a nonmember of the oligarchy, find the maximum possible value of .
Solution
Average work done sets up an equation: Let and : Complete the squares:
Note that so must use minus. This means that C is maximized if is at a maximum
Solution 2
As in the first solution, we get . We rearrange and obtain . We divide by to obtain . We then subtract from both sides, and factor to obtain . If we graph this with being on the -axis and being on the -axis, this equation is the hyperbola , except scaled up by and translated to the left and up. This graph intersects and , and the maximum difference clearly occurs at the point when the slope of the function is . This is at . Our answer is .
~mathboy100