Spiral similarity

Revision as of 09:56, 10 June 2023 by Vvsss (talk | contribs)

A spiral similarity is a plane transformation composed of a rotation of the plane and a dilation of the plane having the common center. The order in which the composition is taken is not important.

The transformation is linear and transforms any given object into an object homothetic to given.

On the complex plane, any spiral similarity can be expressed in the form $T(x) = x_0+k (x-x_0),$ where $k$ is a complex number. The magnitude $|k|$ is the dilation factor of the spiral similarity, and the argument $\arg(k)$ is the angle of rotation.

The spiral similarity is uniquely defined by the images of two distinct points. It is easy to show using the complex plane.

Spiral center.png

Let $A' = T(A), B' = T(B),$ with corresponding complex numbers $a', a, b',$ and $b,$ so \[a'  = T(a) = x_0 + k (a - x_0),  b'  = T(b) = x_0+ k (b-x_0) \implies\] \[k = \frac {T(b) - T(a)}{b-a} = \frac {b' - a' }{b - a},\] \[x_0=\frac {ab' - ba' }{a-a'+b' -b}, a' - a \ne b' - b.\]

Any line segment $AB$ can be mapped into any other $A'B'$ using the spiral similarity. Notation is shown on the diagram. $P = AB \cap A'B'.$

$\Omega$ is circle $AA'P,  \omega$ is circle $BB'P, x_0 = \Omega \cap \omega, x_0 \neq P,$

$C$ is any point of $AB, \theta$ is circle $CPx_0, C' = \theta \cap A'B'$ is the image $C$ under spiral symilarity centered at $x_0, |k| = \frac {A'B'}{AB}$ is the dilation factor, $\angle APA' = \arg(k)$ is the angle of rotation.