2023 AIME II Problems/Problem 11

Problem

Find the number of collections of $16$ distinct subsets of $\{1,2,3,4,5\}$ with the property that for any two subsets $X$ and $Y$ in the collection, $X \cap Y \not= \emptyset.$

Solution

Denote by $\mathcal C$ a collection of 16 distinct subsets of $\left\{ 1, 2, 3, 4, 5 \right\}$. Denote $N = \min \left\{ |S|: S \in \mathcal C \right\}$.

Case 1: $N = 0$.

This entails $\emptyset \in \mathcal C$. Hence, for any other set $A \in \mathcal C$, we have $\emptyset \cap A = \emptyset$. This is infeasible.

Case 2: $N = 1$.

Let $\{a_1\} \in \mathcal C$. To get $\{a_1\} \cap A \neq \emptyset$ for all $A \in \mathcal C$. We must have $a_1 \in \mathcal A$.

The total number of subsets of $\left\{ 1, 2, 3, 4, 5 \right\}$ that contain $a_1$ is $2^4 = 16$. Because $\mathcal C$ contains 16 subsets. We must have $\mathcal C = \left\{ \{a_1\} \cup A : \forall \ A \subseteq \left\{ 1, 2, 3, 4, 5 \right\} \backslash \left\{a_1 \right\} \right\}$. Therefore, for any $X, Y \in \mathcal C$, we must have $X \cap Y \supseteq \{a_1\}$. So this is feasible.

Now, we count the number of $\mathcal C$ in this case. We only need to determine $a_1$. Therefore, the number of solutions is 5.

Case 3: $N = 2$.

Case 3.1: There is exactly one subset in $\mathcal C$ that contains 2 elements.

Denote this subset as $\left\{ a_1, a_2 \right\}$. We then put all subsets of $\left\{ 1, 2, 3, 4, 5 \right\}$ that contain at least three elements into $\mathcal C$, except $\left\{ a_3, a_4, a_5 \right\}$. This satisfies $X \cap Y \neq \emptyset$ for any $X, Y \in \mathcal C$.

Now, we count the number of $\mathcal C$ in this case. We only need to determine $\left\{ a_1, a_2 \right\}$. Therefore, the number of solutions is $\binom{5}{2} = 10$.

Case 3.2: There are exactly two subsets in $\mathcal C$ that contain 2 elements.

They must take the form $\left\{ a_1, a_2 \right\}$ and $\left\{ a_1, a_3 \right\}$.

We then put all subsets of $\left\{ 1, 2, 3, 4, 5 \right\}$ that contain at least three elements into $\mathcal C$, except $\left\{ a_3, a_4, a_5 \right\}$ and $\left\{ a_2, a_4, a_5 \right\}$. This satisfies $X \cap Y \neq \emptyset$ for any $X, Y \in \mathcal C$.

Now, we count the number of $\mathcal C$ in this case. We only need to determine $\left\{ a_1, a_2 \right\}$ and $\left\{ a_1, a_3 \right\}$. Therefore, the number of solutions is $5 \cdot \binom{4}{2} = 30$.

Case 3.3: There are exactly three subsets in $\mathcal C$ that contain 2 elements. They take the form $\left\{ a_1, a_2 \right\}$, $\left\{ a_1, a_3 \right\}$, $\left\{ a_1, a_4 \right\}$.

We then put all subsets of $\left\{ 1, 2, 3, 4, 5 \right\}$ that contain at least three elements into $\mathcal C$, except $\left\{ a_3, a_4, a_5 \right\}$, $\left\{ a_2, a_4, a_5 \right\}$, $\left\{ a_2, a_3, a_5 \right\}$. This satisfies $X \cap Y \neq \emptyset$ for any $X, Y \in \mathcal C$.

Now, we count the number of $\mathcal C$ in this case. We only need to determine $\left\{ a_1, a_2 \right\}$, $\left\{ a_1, a_3 \right\}$, $\left\{ a_1, a_4 \right\}$. Therefore, the number of solutions is $5 \cdot \binom{4}{3} = 20$.

Case 3.4: There are exactly three subsets in $\mathcal C$ that contain 2 elements. They take the form $\left\{ a_1, a_2 \right\}$, $\left\{ a_1, a_3 \right\}$, $\left\{ a_2, a_3 \right\}$.

We then put all subsets of $\left\{ 1, 2, 3, 4, 5 \right\}$ that contain at least three elements into $\mathcal C$, except $\left\{ a_3, a_4, a_5 \right\}$, $\left\{ a_2, a_4, a_5 \right\}$, $\left\{ a_1, a_4, a_5 \right\}$. This satisfies $X \cap Y \neq \emptyset$ for any $X, Y \in \mathcal C$.

Now, we count the number of $\mathcal C$ in this case. We only need to determine $\left\{ a_1, a_2 \right\}$, $\left\{ a_1, a_3 \right\}$, $\left\{ a_2, a_3 \right\}$. Therefore, the number of solutions is $\binom{5}{3} = 10$.

Case 3.5: There are exactly four subsets in $\mathcal C$ that contain 2 elements. They take the form $\left\{ a_1, a_2 \right\}$, $\left\{ a_1, a_3 \right\}$, $\left\{ a_1, a_4 \right\}$, $\left\{ a_1, a_5 \right\}$.

We then put all subsets of $\left\{ 1, 2, 3, 4, 5 \right\}$ that contain at least three elements into $\mathcal C$, except $\left\{ a_3, a_4, a_5 \right\}$, $\left\{ a_2, a_4, a_5 \right\}$, $\left\{ a_1, a_4, a_5 \right\}$, $\left\{ a_2, a_3, a_4 \right\}$. This satisfies $X \cap Y \neq \emptyset$ for any $X, Y \in \mathcal C$.

Now, we count the number of $\mathcal C$ in this case. We only need to determine $\left\{ a_1, a_2 \right\}$, $\left\{ a_1, a_3 \right\}$, $\left\{ a_1, a_4 \right\}$, $\left\{ a_1, a_5 \right\}$. Therefore, the number of solutions is 5.

Putting all subcases together, the number of solutions is this case is $10 + 30 + 20 + 10 + 5 = 75$.

Case 4: $N \geq 3$.

The number of subsets of $\left\{ 1, 2, 3, 4, 5 \right\}$ that contain at least three elements is $\sum_{i=3}^5 \binom{5}{3} = 16$. Because $\mathcal C$ has 16 elements, we must select all such subsets into $\mathcal C$. Therefore, the number of solutions in this case is 1.

Putting all cases together, the total number of $\mathcal C$ is $5 + 75 + 1 = \boxed{\textbf{(081) }}$.

Video Solution

https://youtu.be/FH2QUGVNchw

See also

2023 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png