2023 AMC 10B Problems/Problem 18
Problem 18
Suppose 𝑎, 𝑏, and 𝑐 are positive integers such that .
Which of the following statements are necessarily true?
I. If or or both, then .
II. If , then or or both.
III. if and only if .
Solution 1 (Guess and check + Contrapositive)
being revised ~Technodoggo
Solution 2
The equation given in the problem can be written as
A counter example is and . Thus, .
First, we prove the ``if part.
Suppose and . However, .
Thus, must be divisible by at least one factor of 210. W.L.O.G, we assume is divisible by 2.
Modulo 2 on Equation (1), we get that . This is a contradiction with the condition that . Therefore, the ``if part in Statement III is correct.
Second, we prove the ``only if part.
Suppose . Because , there must be one factor of 14 or 15 that divides . W.L.O.G, we assume there is a factor of 14 that divides . Because , we have . Modulo on Equation (1), we have .
Because , we have .
Analogously, we can prove that .
This is simply a special case of the ``only if part of Statement III. So we omit the proof.
All analysis above imply
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)