2013 Canadian MO Problems/Problem 4

Revision as of 16:29, 27 November 2023 by Tomasdiaz (talk | contribs)

Problem

Let $n$ be a positive integer. For any positive integer $j$ and positive real number $r$, define \[f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right),\text{ and }g_j(r) =\min (\lceil jr\rceil, n)+\min\left(\left\lceil\frac{j}{r}\right\rceil, n\right),\] where $\lceil x\rceil$ denotes the smallest integer greater than or equal to $x$. Prove that \[\sum_{j=1}^n f_j(r)\leq n^2+n\leq \sum_{j=1}^n g_j(r)\] for all positive real numbers $r$.

Solution

Case 1: $r=1$

Since $j \le n$ in the sum, the


~Tomas Diaz. orders@tomasdiaz.com Template:Olution