Bisector

Revision as of 16:02, 7 December 2023 by Vvsss (talk | contribs) (Created page with "==Division of bisector== Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c</math> be given. Let <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Division of bisector

Let a triangle $\triangle ABC, BC = a, AC = b, AB = c$ be given. Let $AA', BB',$ and $CC'$ be the bisectors of $\triangle ABC.$ The segments $BB'$ and $A'C'$ meet at point $D.$

Find $\frac {BI}{BB'}, \frac {BD}{BB'}, \frac {DA'}{DC'}.$

Solution

$\frac {BA'}{CA'} = \frac {BA}{CA} = \frac {c}{b}, BA' + CA' = BC = a \implies BA' = \frac {a \cdot c}{b+c}.$

Similarly $BC' = \frac {a \cdot c}{a+b},  B'C = \frac {a \cdot b}{a+b}.$ \[\frac {BI}{IB'} = \frac {a}{B'C} = \frac{a+c}{b} \implies \frac {BI}{BB'} = \frac {a+c}{a + b +c}.\]

Denote $\angle ABC = 2 \beta.$ Bisector $BB' = 2 \frac {a \cdot c}{a + c} \cos \beta.$

Bisector $BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies$ \[\frac {BD}{BB'} = \frac{a+c}{a+2b+c}.\]

\[\frac {DA'}{DC'} = \frac {BA'}{BC'} =  \frac {a+ b}{b +c}.\]