2002 AMC 12P Problems/Problem 17

Revision as of 01:16, 31 December 2023 by Wes (talk | contribs) (Solution 2 (Cheese))

Problem

Let $f(x) = \sqrt{\sin^4{x} + 4 \cos^2{x}} - \sqrt{\cos^4{x} + 4 \sin^2{x}}.$ An equivalent form of $f(x)$ is

$\text{(A) }1-\sqrt{2}\sin{x} \qquad \text{(B) }-1+\sqrt{2}\cos{x} \qquad \text{(C) }\cos{\frac{x}{2}} - \sin{\frac{x}{2}} \qquad \text{(D) }\cos{x} - \sin{x} \qquad \text{(E) }\cos{2x}$

Solution

Solution 2 (Cheese)

We don't actually have to solve the question. Just let $x$ equal some easy value to calculate $\cos {x}, \cos {2x}, \sin {x}, \sin {\frac{x}{2}},$ and $\cos {\frac{x}{2}}.$ For this solution, let $x=60^\circ.$ This means that the expression in the problem will give $\sqrt{\sin^4{60^\circ} + 4 \cos^2{60^\circ}} - \sqrt{\cos^4{60^\circ} + 4 \sin^2{60^\circ}}=\sqrt{(\frac{\sqrt{3}}{2})^4 + 4(\frac{1}{2})^2} - \sqrt{(\frac{1}{2})^4 + 4(\frac{\sqrt{3}}{2})^2}=\sqrt{\frac{9}{16} +1} - \sqrt{\frac{1}{16} + 3} = \frac{-1}{2}.$ Plugging in $x=60^\circ$ for the rest of the expressions, we get

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png