2002 AMC 12P Problems/Problem 8
Contents
Problem
Let be a segment of length , and let points and be located on such that and . Let and be points on one of the semicircles with diameter for which and are perpendicular to . Find
Solution 1
We can solve this with some simple coordinate geometry. Let be the origin at let be located on the positive axis. The equation of semi-circle is Since and are both perpendicular to and respectively, they must have the same coordinate. Plugging in and into our semi-circle equation gives us and respectively. The distance formula on and gives us our answer of
Solution 2
See also
2002 AMC 12P (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.