2024 AMC 8 Problems/Problem 7

Revision as of 16:08, 25 January 2024 by Ilovemath31415926535 (talk | contribs) (Problem)

Problem

A $3x7$ rectangle is covered without overlap by 3 shapes of tiles: $2x2$, $1x4$, and $1x1$, shown below. What is the minimum possible number of $1x1 tiles used?$\textbf{(A) } 1\qquad\textbf{(B) } 2\qquad\textbf{(C) } 3\qquad\textbf{(D) } 4\qquad\textbf{(E) } 5

Solution 1

We can eliminate B, C, and D, because they are not $21-$ any multiple of $4$. Finally, we see that there is no way to have A, so the solution is $(E) \boxed{5}$.

Solution 1

Video Solution 1(easy to digest) by Power Solve

https://youtu.be/16YYti_pDUg?si=KjRhUdCOAx10kgiW&t=59