2024 AMC 8 Problems/Problem 19

Revision as of 18:33, 26 January 2024 by Yoyo97 (talk | contribs) (Video Solution by Power Solve)

Problem

Jordan owns 15 pairs of sneakers. Three fifths of the pairs are red and the rest are white. Two thirds of the pairs are high-top and the rest are low-top. The red high-top sneakers make up a fraction of the collection. What is the least possible value of this fraction?

$\textbf{(A) } 0\qquad\textbf{(B) } \dfrac{1}{5} \qquad\textbf{(C) } \dfrac{4}{15} \qquad\textbf{(D) } \dfrac{1}{3} \qquad\textbf{(E) } \dfrac{2}{5}$

Solution

Jordan has $10$ high top sneakers, and $6$ white sneakers. We would want as many white high-top sneakers as possible, so we set $6$ high-top sneakers to be white. Then, we have $10-6=4$ red high-top sneakers, so the answer is $\boxed{\dfrac{4}{15}}.$ ~andliu766

Solution 1

We first start by finding the amount of red and white sneakers. 3/5 * 15=9 red sneakers, so 6 are white sneakers. Then 2/3 * 15=10 are high top sneakers, so 5 are low top sneakers. Now think about 15 slots and the first 10 are labeled high top sneakers. if we insert the last 5 sneakers as red sneakers there are 4 leftover over red sneakers. Putting those four sneakers as high top sneakers we have are answer as C or $\boxed{\dfrac{4}{15}}.$

-Multpi12

Video Solution by Power Solve (crystal clear)

https://www.youtube.com/watch?v=jmaLPhTmCeM

Video Solution 1 by Math-X (First fully understand the problem!!!)

https://www.youtube.com/watch?v=eYnLh_SGy7c

~Math-X

Video Solution 2 by OmegaLearn.org

https://youtu.be/W_DyNSmRSLI

Video Solution 3 by SpreadTheMathLove

https://www.youtube.com/watch?v=Svibu3nKB7E

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=qaOkkExm57U