2024 AMC 8 Problems/Problem 1

Revision as of 18:51, 26 January 2024 by Yoyo97 (talk | contribs)

Problem

What is the ones digit of \[222,222-22,222-2,222-222-22-2?\] $\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8$

Solution 1

We can rewrite the expression as \[222,222-(22,222+2,222+222+22+2).\]

We note that the units digit of the addition is $0$ because all the units digits of the five numbers are $2$ and $5*2=10$, which has a units digit of $0$.

Now, we have something with a units digit of $0$ subtracted from $222,222$. The units digit of this expression is obviously $2$, and we get $\boxed{B}$ as our answer.

~ Dreamer1297

Solution 2

\[222,222-22,222-2,222-222-22-2\] \[= 200,000 - 2,222 - 222 - 22 - 2\] \[= 197778 - 222 - 22 - 2\] \[= 197556 - 22 - 2\] \[= 197534 - 2\] \[= 197532\] This means the ones digit is $\boxed{\textbf{(B)} \hspace{1 mm} 2}$ $\newline$ ~ nikhil ~ CXP

Solution 3

We only care about the unit's digits.

Thus, $2-2$ ends in $0$, $0-2$ ends in $8$, $8-2$ ends in $6$, $6-2$ ends in $4$, and $4-2$ ends in $\boxed{\textbf{(B) } 2}$.

~MrThinker

Solution 4

Let $S$ be equal to the expression at hand. We reduce each term modulo $10$ to find the units digit of each term in the expression, and thus the units digit of the entire thing:

\[S\equiv 2 - 2 - 2 - 2- 2- 2 \equiv -8 \equiv -8 + 10\equiv \boxed{\textbf{(B) } 2} \pmod{10}.\]

-Benedict T (countmath1)

Video Solution 1 (easy to digest) by Power Solve

https://www.youtube.com/watch?v=HE7JjZQ6xCk

Video Solution by NiuniuMaths (Easy to understand!)

https://www.youtube.com/watch?v=Ylw-kJkSpq8

~NiuniuMaths

Video Solution 2 by SpreadTheMathLove

https://www.youtube.com/watch?v=L83DxusGkSY

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=IMqOfC9lZSo

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png