User:Quantum-phantom

Revision as of 05:11, 15 April 2024 by Quantum-phantom (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

By the law of cosines, \[\cos\angle DAC=\frac{221-CD^2}{220}=\cos\angle DBC=\frac{169-CD^2}{120},\] so $CD=\sqrt{\tfrac{533}{5}}$. Similarly, $AB=\tfrac{2 \sqrt{5} \sqrt{533}}{13}$. Let $AD\cap BC=I$, $AB\cap CD=J$, $OE\cap IJ=F$, then $OF\perp IJ$ by Brocard's theorem. Since $ON\perp DC$, $OM\perp AB$, then \begin{align*} \frac{MP}{NP}&=\frac{MO\sin\angle MOE}{NO\sin\angle NOE}=\frac{\sin\angle MOE}{\sin\angle NOE}=\frac{\sin\angle IJA}{\sin(\pi-\angle DJI)}=\frac{\sin\angle IJA}{\sin\angle DJI}\\ &=\frac{JA\cdot JI\sin\angle IJA}{IJ\cdot DJ\sin\angle DJI}\cdot\frac{DJ}{JA}=\frac{[IJA]}{[DJI]}\cdot\frac{DJ}{JA}=\frac{IA}{ID}\cdot\frac{DJ}{JA}. \end{align*} By the law of sines, \[\frac{IA}{ID}=\frac{IA}{IC}\cdot\frac{IC}{ID}=\frac{AB}{CD}\cdot\frac{AC}{BD}=\frac{55}{78},~\frac{DJ}{JA}=\frac{BD}{AC}=\frac{12}{11}.\] So the answer is \(\tfrac{MP}{NP}=\frac{12}{11}\cdot\frac{55}{78}=\frac{10}{13}\). [img]https://img.picgo.net/2024/04/07/IMG_3135a148c4fcc55ace27.jpeg[/img]