2024 INMO
==Problem 1
\text {In} triangle ABC with , \text{point E lies on the circumcircle of} \text{triangle ABC such that} . \text{The line through E parallel to CB intersect CA in F} \text{and AB in G}.\text{Prove that}\\ \text{the centre of the circumcircle of} triangle EGB \text{lies on the circumcircle of triangle ECF.}
Solution
To Prove: Points E, F, P, C are concyclic
Observe: Notice that because . Here F is the circumcentre of because lies on the Perpendicular bisector of AG is the midpoint of is the perpendicular bisector of . This gives And because Points E, F, P, C are concyclic. Hence proven that the centre of the circumcircle of lies on the circumcircle of .