2021 CIME I Problems/Problem 1

Revision as of 18:12, 24 July 2024 by Thepowerful456 (talk | contribs) (diagram)

Problem

Let $ABCD$ be a square. Points $P$ and $Q$ are on sides $AB$ and $CD,$ respectively$,$ such that the areas of quadrilaterals $APQD$ and $BPQC$ are $20$ and $21,$ respectively. Given that $\tfrac{AP}{BP}=2,$ then $\tfrac{DQ}{CQ}=\tfrac{a}{b},$ where $a$ and $b$ are relatively prime positive integers. Find $a+b$.

Solution

[asy]  import geometry;  point B = (0,0); point C = (16,0); point A = (0,16); point D = (16,16); point P = A * 1/3; point Q = C * 38/85 + D * 47/85;  // Square ABCD draw(A--B--C--D--A); dot(A); label("A",A,NW); dot(B); label("B",B,SW); dot(C); label("C",C,SE); dot(D); label("D",D,NE);  // Segment PQ draw(P--Q); dot(P); label("P",P,W); dot(Q); label("Q",Q,E);  [/asy]

$\boxed{123}$

See also

2021 CIME I (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All CIME Problems and Solutions