2013 Mock AIME I Problems/Problem 8

Revision as of 12:57, 30 July 2024 by Thepowerful456 (talk | contribs) (Created page with "== Problem == Let <math>\textbf{u}=4\textbf{i}+3\textbf{j}</math> and <math>\textbf{v}</math> be two perpendicular vectors in the <math>x-y</math> plane. If there are <math>n<...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $\textbf{u}=4\textbf{i}+3\textbf{j}$ and $\textbf{v}$ be two perpendicular vectors in the $x-y$ plane. If there are $n$ vectors $\textbf{r}_i$ for $i=1, 2, \ldots, n$ in the same plane having projections of $1$ and $2$ along $\textbf{u}$ and $\textbf{v}$ respectively, then find \[\sum_{i=1}^{n}\|\textbf{r}_i\|^2.\] (Note: $\textbf{i}$ and $\textbf{j}$ are unit vectors such that $\textbf{i}=(1,0)$ and $\textbf{j}=(0,1)$, and the projection of a vector $\textbf{a}$ onto $\textbf{b}$ is the length of the vector that is formed by the origin and the foot of the perpendicular of $\textbf{a}$ onto $\textbf{b}$.)

Solution

$\boxed{020}$.

See also