User:Raymonm

Revision as of 15:45, 8 September 2024 by Raymonm (talk | contribs) (Created page with "LaTeX Stuff Proofs of Every Logarithm Property <math>1</math>: <math>\text{log}_a b^n=n~\text{log}_a b</math> Proof: Let <math>x=\text{log}_a b^n</math> and <math>y=n~\text...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

LaTeX Stuff

Proofs of Every Logarithm Property

$1$: $\text{log}_a b^n=n~\text{log}_a b$

Proof: Let $x=\text{log}_a b^n$ and $y=n~\text{log}_a b$. This implies that $a^x=b^n$ and $\frac{y}{n}=\text{log}_a b\implies a^{\frac{y}{n}}=b$. Raising the equation $a^{\frac{y}{n}}=b$ to the $n^\text{th}$ power on both sides gives $a^y=b^n$. If $a^x=b^n$ and $a^y=b^n$, then $x=y$. This means that $\text{log}_a b^n=n~\text{log}_a b$.

$2$: $\text{log}_a b+\text{log}_a c=\text{log}_a bc$

Proof: If $x=\text{log}_a b$ and $y=\text{log}_a c$ and $z=\text{log}_a bc$, then $x+y=z$. By the definition of a logarithm, $a^x=b$, $a^y=c$, and $a^z=bc$. Multiplying the first two equations together, $a^x a^y=bc\implies a^{x+y}=bc$. Since $a^{x+y}=bc$ and $a^z=bc$, then $x+y=z$.

$3$: $\text{log}_a b-\text{log}_a c=\text{log}_a \frac{b}{c}$

Proof: If $x=\text{log}_a b$ and $y=\text{log}_a c$ and $z=\text{log}_a \frac{b}{c}$, then $x-y=z$. Then, $a^x=b$, $a^y=c$, and $a^z=\frac{b}{c}$. We divide the first two equations together to get $\frac{a^x}{a^y}=\frac{b}{c}\implies a^{x-y}=\frac{b}{c}$. Because that $a^{x-y}=\frac{b}{c}$ and $a^z=\frac{b}{c}$, $x-y=z$.

$4$: $(\text{log}_a b)(\text{log}_c d)=(\text{log}_a d)(\text{log}_c b)$

Proof: Let $\text{log}_a b=w$, $\text{log}_c d=x$, $\text{log}_a d=y$, and $\text{log}_c b=z$. We have to prove that $wx=yz$. We write the logarithms in exponential form: $a^w=b$, $c^x=d$, $a^y=d$, and $c^z=b$. Combining the equations together in pairs by multiplication, $a^w c^x=a^y c^z=bd$. This is true if and only if $w=y$ and $x=z$. Combining the two equations together by multiplication gives $wx=yz$.

$5$: $\frac{\text{log}_a b}{\text{log}_a c}=\text{log}_c b$

Proof: We multiply both sides by $\text{log}_a c$ to get $\text{log}_a b=(\text{log}_a c)(\text{log}_c b)$. If $\text{log}_a b=x$, $\text{log}_a c=y$, and $\text{log}_c b=z$, $x=yz$. Furthermore, $a^x=b$, $a^y=c$, and $c^z=b$. Since $a^x=b$ and $c^z=b$, $a^x=c^z$. Raising both sides of the equation $a^y=c$ to the $z^\text{th}$ power gives $(a^y)^z=c^z\implies a^{yz}=c^z$. Since $a^x=c^z$ and $a^{yz}=c^z$, $a^x=a^{yz}$. This is only true if $x=yz$, so we are done.

$6$: $\text{log}_{a^n} b^n=\text{log}_a b$

Proof: Let $x=\text{log}_{a^n} b^n$ and $y=\text{log}_a b$. This implies that $x=y$. Converting the logarithms into exponential form gives $(a^n)^x=b^n\implies a^{xn}=b^n \implies (a^x)^n=b^n$ and $a^y=b$. Taking the $n^\text{th}$ root on both sides, $a^x=b$. Since $a^x=a^y=b$, $x=y$.