2002 AMC 12P Problems/Problem 25

Revision as of 20:59, 1 October 2024 by Lil cat (talk | contribs) (Solution 2 (doesn't work but gives the right answer))

Problem

Let $a$ and $b$ be real numbers such that $\sin{a} + \sin{b} = \frac{\sqrt{2}}{2}$ and $\cos {a} + \cos {b} = \frac{\sqrt{6}}{2}.$ Find $\sin{(a+b)}.$

$\text{(A) }\frac{1}{2} \qquad \text{(B) }\frac{\sqrt{2}}{2} \qquad \text{(C) }\frac{\sqrt{3}}{2} \qquad \text{(D) }\frac{\sqrt{6}}{2} \qquad \text{(E) }1$

Solution

Suppose we substitute $\frac{a+b}{2} = x$ and $\frac{a-b}{2} = y$. Sum to product gives us

\[2\sin{x}\cos{y} = \frac{\sqrt{2}}{2}\]

\[2\cos{x}\cos{y} = \frac{\sqrt{6}}{2}.\]

Dividing these equations tells us that $\tan{x} = \frac{1}{\sqrt{3}}$, so $x = \frac{\pi}{6} + \pi n$ for an integer $n$. Note that $a+b = 2x$, so $\sin(a+b) = \sin{2x} = \sin (\frac{\pi}{3} + 2\pi n) = \frac{\sqrt{3}}{2}$, so our answer is $\boxed{(C)}$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png