2008 AMC 8 Problems/Problem 13

Revision as of 23:57, 27 October 2024 by Megaboy6679 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Mr. Harman needs to know the combined weight in pounds of three boxes he wants to mail. However, the only available scale is not accurate for weights less than $100$ pounds or more than $150$ pounds. So the boxes are weighed in pairs in every possible way. The results are $122$, $125$ and $127$ pounds. What is the combined weight in pounds of the three boxes?

$\textbf{(A)}\ 160\qquad \textbf{(B)}\ 170\qquad \textbf{(C)}\ 187\qquad \textbf{(D)}\ 195\qquad \textbf{(E)}\ 354$


Solution 1

Each box is weighed twice during this, so the combined weight of the three boxes is half the weight of these separate measures:

\[\frac{122+125+127}{2} = \frac{374}{2} = \boxed{\textbf{(C)}\ 187}.\]

Solution 2

Using variables $a$, $b$, and $c$ to denote the boxes, with $a \le b \le c$. It is obvious that $a+b=122$ and $a+c=125$, since these are the two smallest pairs. Subtracting the former equation from the latter results in $c-b=3$. Additionally, $c+b=127$. Solving for $c$ and $b$ gives $c=65$ and $b=62$, so we can thus find $a=60$. Solving $60+62+65=\boxed{\textbf{(C) }\ 187}$

~megaboy6679

Video Solution

https://www.youtube.com/watch?v=LKhOV9p4WiY ~David


See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png