2024 AMC 10B Problems/Problem 6
Problem
A rectangle has integer length sides and an area of 2024. What is the least possible perimeter of the rectangle?
Solution 1 - Prime Factorization
We can start by assigning the values x and y for both sides. Here is the equation representing the area:
Let's write out 2024 fully factorized.
Since we know that , we want the two closest numbers possible. After some quick analysis, those two numbers are and .
Now we multiply by and get
Solution by IshikaSaini.
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.