Vornicu-Schur Inequality

Revision as of 13:37, 30 March 2008 by Temperal (talk | contribs) (notes)

The Vornicu-Schur' refers to a generalized version of Schur's Inequality.

Theorem

In 2007, Romanian mathematician Valentin Vornicu showed that a generalized form of Schur's inequality exists:

Consider $a,b,c,x,y,z \in \mathbb{R}$, where $a \ge b \ge c$, and either $x \geq y \geq z$ or $>z \geq y \geq x$. Let $k \in \mathbb{Z}^{+}$, and let $f:\mathbb{R} \rightarrow \mathbb{R}_{0}^{+}$ be either convex or monotonic. Then,

$f(x)(a-b)^k(a-c)^k+f(y)(b-a)^k(b-c)^k+f(z)(c-a)^k(c-b)^k \ge 0$

The standard form of Schur's is the case of this inequality where $x=a$, $y=b$, $z=c$, $k = 1$, and $f(m) = m^r$.<ref>Vornicu, Valentin; Olimpiada de Matematica... de la provocare la experienta; GIL Publishing House; Zalau, Romania.</ref>

External Links

  • A full statement, as well as some applications can be found in this article.

Notes

<references/>