Ultrafilter
An ultrafilter is a set theoretic structure.
Definition
An ultrafilter on a set is a non-empty filter on with the following property:
- For every set , either or its complement is an element of .
An ultrafilter is a finest filter, that is, if is an ultrafilter on , then there is no filter on such that . All finest filters are also ultrafilters; we will prove this later.
Types of Ultrafilters
An ultrafilter is said to be principle, or fixed, or trivial if it has a least element, i.e., an element which is a subset of all the others. Otherwise, an ultrafilter is said to be nontrivial, or free, or non-principle.
Proposition. Let be a trivial ultrafilter on . Then there exists an element such that is the set of subsets of which contain .
Proof. Let be a minimal element of . It suffices to show that contains a single element. Indeed, let be an element of . Since is an ultrafilter, one of the sets , must be an element of . But , so must be an element of . Hence , so , as desired.
Evidently, the only filters on finite sets are trivial.
This article is a stub. Help us out by expanding it.