Rational Root Theorem

Revision as of 01:23, 18 August 2008 by Brut3Forc3 (talk | contribs) (Intermediate)

This article is a stub. Help us out by expanding it.


Given a polynomial $P(x) = a_n x^n + a_{n - 1}x^{n - 1} + \ldots + a_1 x + a_0$ with integral coefficients, $a_n \neq 0$. The Rational Root Theorem states that if $P(x)$ has a rational root $r = \pm\frac pq$ with $p, q$ relatively prime positive integers, $p$ is a divisor of $a_0$ and $q$ is a divisor of $a_n$.

As a consequence, every rational root of a monic polynomial with integral coefficients must be integral.

This gives us a relatively quick process to find all "nice" roots of a given polynomial, since given the coefficients we have only a finite number of rational numbers to check.

Problems

Intermediate

Find all rational roots of the polynomial $x^4-x^3-x^2+x+57$.

Prove that $\sqrt{2}$ is irrational, using the Rational Root Theorem.