2002 AMC 10B Problems/Problem 3

Revision as of 01:31, 27 December 2008 by Lifeisacircle (talk | contribs) (created page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The arithmetic mean of the nine numbers in the set $\{9,99,999,9999,...,999999999\}$ is a $9$-digit number $M$, all of whose digits are distinct. The number $M$ does not contain the digit

$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 8$

Solution

We wish to find $\frac{9+99+\cdots +999999999}{9}$, or $\frac{9(1+11+111+\cdots +111111111)}{9}=123456789$. This does not have the digit 0, so $\mathrm{ (A) \ }$