1986 AJHSME Problems/Problem 25

Revision as of 10:30, 24 January 2009 by 5849206328x (talk | contribs)

Problem

Which of the following sets of whole numbers has the largest average?

$\text{(A)}\ \text{multiples of 2 between 1 and 101} \qquad \text{(B)}\ \text{multiples of 3 between 1 and 101}$

$\text{(C)}\ \text{multiples of 4 between 1 and 101} \qquad \text{(D)}\ \text{multiples of 5 between 1 and 101}$

$\text{(E)}\ \text{multiples of 6 between 1 and 101}$

Solution

There seems to be no better way to solve this other than just find each of those, so that's what we do.

From $1$ to $101$ there are $\left\lfloor \frac{101}{2} \right\rfloor = 50$ (see Floor function) multiples of $2$, and their average is \begin{align*} \frac{2\cdot 1+2\cdot 2+2\cdot 3+\cdots + 2\cdot 50}{50} &= \frac{2(1+2+3+\cdots +50)}{50} \\ &= \frac{2\cdot \frac{50\cdot 51}{2}}{50} \\ &= \frac{2\cdot 51}{2} \\ &= 51 \\ \end{align*}

Similarly, we can find that the average of the multiples of $3$ between $1$ and $101$ is $51$, the average of the multiples of $4$ is $52$, the average of the multiples of $5$ is $52.5$, and the average of the multiples of $6$ is $51$, so the one with the largest average is $\boxed{\text{D}}$

See Also

1986 AJHSME Problems