Prime ideal

Revision as of 18:41, 23 August 2009 by Jam (talk | contribs) (Created page with 'In ring theory we say that an ideal <math>P</math> of a ring <math>R</math> is '''prime''' if <math>P\ne R</math> and for any ideals <math>I,J\subseteq R</math> with …')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In ring theory we say that an ideal $P$ of a ring $R$ is prime if $P\ne R$ and for any ideals $I,J\subseteq R$ with $IJ\subseteq P$ we have either $I\subseteq P$ or $J\subseteq P$.

If $R$ is commutative then the following simpler definition holds: An ideal $P\subseteq R$ is prime iff $P\ne R$ and for any $a,b\in R$ if $ab\in P$ then either $a\in P$ or $b\in P$.

This second definition easily implies the the following important property of prime ideals in commutative rings with unity: