2010 USAJMO Problems/Problem 1
Problem
A permutation of the set of positive integers is a sequence such that each element of appears precisely one time as a term of the sequence. For example, is a permutation of . Let be the number of permutations of for which is a perfect square for all . Find with proof the smallest such that is a multiple of .
Solution
The smallest .
Proof
Let be the set of positive perfect squares. We claim that the relation $R = \{(j, k) \in [n]\times[n] \st jk \in S\}$ (Error compiling LaTeX. Unknown error_msg) is an equivalence relation on .
- It is reflexive because for all .
- It is symmetric because .
- It is transitive because if and , then , since is closed under multiplication and a non-square times a square is always a non-square.
We are restricted to permutations for which , in other words to permutations that send each element of into its equivalence class. Suppose there are equivalence classes: . Let be the number of elements of , then
Now . In order that , we must have for the class with the most elements. This means , since no smaller factorial will have as a factor. This condition is sufficient, since will be divisible by for , and even more so .
The smallest element of the equivalence class is square-free, since if it were divisible by the square of a prime, the quotient would be a smaller element of . Also, each prime that divides divides all the other elements of , since and thus . Therefore for all . The primes that are not in occur an even number of times in each .
Thus the equivalence class . With , we get the largest possible . This is just the set of squares in , of which we need at least , so . This condition is necessary and sufficient.