2011 AMC 12B Problems/Problem 6
Revision as of 14:33, 8 March 2011 by Kickpuncher666 (talk | contribs) (Created page with 'In order to solve this problem, use of the tangent-tangent intersection theorem (Angle of intersection between two tangents dividing a circle into arc length A and arc length B =…')
In order to solve this problem, use of the tangent-tangent intersection theorem (Angle of intersection between two tangents dividing a circle into arc length A and arc length B = 1/2 (Arc A° - Arc B°).
In order to utilize this theorem, the degree measures of the arcs must be found. First, set A (Arc length A) equal to 3d, and B (Arc length B) equal to 2d.
Setting 3d+2d = 360° will find d = 72°, and so therefore Arc length A in degrees will equal 216° and arc length B will equal 144°.
Finally, simply plug the two arc lengths into the tangent-tangent intersection theorem, and the answer = 1/2 (216°-144°) = 1/2 (72°) = 36°.