2011 IMO Problems/Problem 5

Revision as of 12:41, 27 November 2011 by V Enhance (talk | contribs) (LaTeX-ify)

Let $f$ be a function from the set of integers to the set of positive integers. Suppose that, for any two integers $m$ and $n$, the difference $f(m) - f(n)$ is divisible by $f(m - n)$. Prove that, for all integers $m$ and $n$ with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$.