2011 IMO Problems/Problem 5
Let be a function from the set of integers to the set of positive integers. Suppose that, for any two integers and , the difference is divisible by . Prove that, for all integers and with , the number is divisible by .
Let be a function from the set of integers to the set of positive integers. Suppose that, for any two integers and , the difference is divisible by . Prove that, for all integers and with , the number is divisible by .
Something appears to not have loaded correctly.