2012 AMC 12A Problems/Problem 23

Revision as of 19:28, 18 February 2012 by Aplus95 (talk | contribs) (Created page with "== Problem 23 == Let <math>S</math> be the square one of whose diagonals has endpoints <math>(0.1,0.7)</math> and <math>(-0.1,-0.7)</math>. A point <math>v=(x,y)</math> is chos...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 23

Let $S$ be the square one of whose diagonals has endpoints $(0.1,0.7)$ and $(-0.1,-0.7)$. A point $v=(x,y)$ is chosen uniformly at random over all pairs of real numbers $x$ and $y$ such that $0 \le x \le 2012$ and $0\le y\le 2012$. Let $T(v)$ be a translated copy of $S$ centered at $v$. What is the probability that the square region determined by $T(v)$ contains exactly two points with integer coefficients in its interior?

$\textbf{(A)}\ 0.125\qquad\textbf{(B)}\ 0.14\qquad\textbf{(C)}\ 0.16\qquad\textbf{(D)}\ 0.25 \qquad\textbf{(E)}\ 0.32$


Solution