2004 AMC 8 Problems/Problem 9

Revision as of 00:02, 12 March 2012 by CYAX (talk | contribs) (Created page with "== Problem == The average of the five numbers in a list is <math>54</math>. The average of the first two numbers is <math>48</math>. What is the average of the last three numbers...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The average of the five numbers in a list is $54$. The average of the first two numbers is $48$. What is the average of the last three numbers?

$\mathrm{(A)\ 55 }\qquad\mathrm{(B)\ 56 }\qquad\mathrm{(C)\ 57 }\qquad\mathrm{(D)\ 58 }\qquad\mathrm{(E)\ 59 }$

Solution

Let the $5$ numbers be $a, b, c, d$, and $e$. Thus $\frac{a+b+c+d+e}{5}=54$ and $a+b+c+d+e=270$. Since $\frac{a+b}{2}=48$, $a+b=96$. Substituting back into our original equation, we have $96+c+d+e=270$ and $c+d+e=174$. Dividing by $3$ gives the average of $58$ $\boxed{\textbf{(D)}\ 58}$