Euler's Totient Theorem

Revision as of 19:34, 24 June 2006 by ComplexZeta (talk | contribs) (Statement)

Statement

Let $\phi(n)$ be Euler's totient function. If ${a}$ is an integer and $m$ is a positive integer relatively prime to $a$, then ${a}^{\phi (m)}\equiv 1 \pmod {m}$.

Credit

This theorem is credited to Leonhard Euler. It is a generalization of Fermat's Little Theorem, which specifies that ${m}$ is prime.

See also