1951 AHSME Problems/Problem 9

Revision as of 07:51, 29 April 2012 by 1=2 (talk | contribs) (Created page with "== Problem == An equilateral triangle is drawn with a side of length <math> a</math>. A new equilateral triangle is formed by joining the midpoints of the sides of the first one....")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

An equilateral triangle is drawn with a side of length $a$. A new equilateral triangle is formed by joining the midpoints of the sides of the first one. Then a third equilateral triangle is formed by joining the midpoints of the sides of the second; and so on forever. The limit of the sum of the perimeters of all the triangles thus drawn is:

$\textbf{(A)}\ \text{Infinite} \qquad\textbf{(B)}\ 5\frac {1}{4}a \qquad\textbf{(C)}\ 2a \qquad\textbf{(D)}\ 6a \qquad\textbf{(E)}\ 4\frac {1}{2}a$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions