2006 AMC 8 Problems/Problem 24

Revision as of 18:38, 29 April 2012 by Brightknight (talk | contribs) (Solution)

Problem

In the multiplication problem below $A$, $B$, $C$, $D$ and are different digits. What is $A+B$?

\[\begin{tabular}{cccc}& A & B & A\\ \times & & C & D\\ \hline C & D & C & D\\ \end{tabular}\] (Error compiling LaTeX. Unknown error_msg)

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 9$

Solution

$CDCD = CD \cdot 101$, so $ABA = 101$. Therefore, $A = 1$ and $B = 0$, so $A+B=1+0=\boxed{\textbf{(A)}\ 1}$.

2006 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions