2012 AMC 12B Problems/Problem 21
Problem
Square is inscribed in equiangular hexagon with on , on , and on . Suppose that , and . What is the side-length of the square?
Solution (Long)
Extend and so that they meet at . Then , so and therefore is parallel to . Also, since is parallel and equal to , we get , hence is congruent to . We now get .
Let , , and .
Drop a perpendicular line from to the line of that meets line at , and a perpendicular line from to the line of that meets at , then is congruent to since is complementary to . Then we have the following equations:
The sum of these two yields that
So, we can now use the law of cosines in :
Therefore