2013 AMC 12B Problems/Problem 21

Revision as of 15:00, 22 February 2013 by Zverevab (talk | contribs) (Created page with "==Problem== Consider the set of 30 parabolas defined as follows: all parabolas have as focus the point (0,0) and the directrix lines have the form <math>y=ax+b</math> with a and ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Consider the set of 30 parabolas defined as follows: all parabolas have as focus the point (0,0) and the directrix lines have the form $y=ax+b$ with a and b integers such that $a\in \{-2,-1,0,1,2\}$ and $b\in \{-3,-2,-1,1,2,3\}$. No three of these parabolas have a common point. How many points in the plane are on two of these parabolas?

$\textbf{(A)}\ 720\qquad\textbf{(B)}\ 760\qquad\textbf{(C)}\ 810\qquad\textbf{(D}}\ 840\qquad\textbf{(E)}\ 870$ (Error compiling LaTeX. Unknown error_msg)