2013 AIME I Problems/Problem 10

Revision as of 16:47, 16 March 2013 by Hck555 (talk | contribs) (Created page with "==Problem 10== There are nonzero integers <math>a</math>, <math>b</math>, <math>r</math>, and <math>s</math> such that the complex number <math>r+si</math> is a zero of the polyn...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 10

There are nonzero integers $a$, $b$, $r$, and $s$ such that the complex number $r+si$ is a zero of the polynomial $P(x)={x}^{3}-a{x}^{2}+bx-65$. For each possible combination of $a$ and $b$, let ${p}_{a,b}$ be the sum of the zeros of $P(x)$. Find the sum of the ${p}_{a,b}$'s for all possible combinations of $a$ and $b$.