Floor function

Revision as of 11:51, 29 June 2006 by JBL (talk | contribs)

The greatest integer function, also known as the floor function, gives the greatest integer less than or equal to its argument. The floor of $x$ is usually denoted by $\lfloor x \rfloor$ or $[x]$. The action of this function is the same as "rounding down." On a positive argument, this function is the same as "dropping everything after the decimal point," but this is not true for negative values.

For example:

  • $\lfloor 3.14 \rfloor = 3$
  • $\lfloor 5 \rfloor = 5$
  • $\lfloor -3.2 \rfloor = -4$

See Also