1990 USAMO Problems

Revision as of 19:47, 3 July 2013 by Etude (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problems from the 1990 USAMO.

Problem 1

A certain state issues license plates consisting of six digits (from 0 through 9). The state requires that any two plates differ in at least two places. (Thus the plates $\boxed{027592}$ and $\boxed{020592}$ cannot both be used.) Determine, with proof, the maximum number of distinct license plates that the state can use.

Solution

Problem 2

A sequence of functions $\, \{f_n(x) \} \,$ is defined recursively as follows: \begin{align*} f_1(x) &= \sqrt {x^2 + 48}, \quad \text{and} \\ f_{n + 1}(x) &= \sqrt {x^2 + 6f_n(x)} \quad \text{for } n \geq 1. \end{align*} (Recall that $\sqrt {\makebox[5mm]{}}$ is understood to represent the positive square root.) For each positive integer $n$, find all real solutions of the equation $\, f_n(x) = 2x \,$.

Solution

Problem 3

Suppose that necklace $\, A \,$ has 14 beads and necklace $\, B \,$ has 19. Prove that for any odd integer $n \geq 1$, there is a way to number each of the 33 beads with an integer from the sequence \[\{ n, n + 1, n + 2, \dots, n + 32 \}\] so that each integer is used once, and adjacent beads correspond to relatively prime integers. (Here a "necklace" is viewed as a circle in which each bead is adjacent to two other beads.)

Solution

Problem 4

Find, with proof, the number of positive integers whose base-$n$ representation consists of distinct digits with the property that, except for the leftmost digit, every digit differs by $\pm 1$ from some digit further to the left. (Your answer should be an explicit function of $n$ in simplest form.)

Solution

Problem 5

An acute-angled triangle $ABC$ is given in the plane. The circle with diameter $\, AB \,$ intersects altitude $\, CC' \,$ and its extension at points $\, M \,$ and $\, N \,$, and the circle with diameter $\, AC \,$ intersects altitude $\, BB' \,$ and its extensions at $\, P \,$ and $\, Q \,$. Prove that the points $\, M, N, P, Q \,$ lie on a common circle.

Solution

See Also

1990 USAMO (ProblemsResources)
Preceded by
1989 USAMO
Followed by
1991 USAMO
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png