2013 AMC 8 Problems/Problem 24

Revision as of 11:28, 27 November 2013 by Chezbgone2 (talk | contribs) (Added diagram. still needs shadiing)

Problem

Squares $ABCD$, $EFGH$, and $GHIJ$ are equal in area. Points $C$ and $D$ are the midpoints of sides $IH$ and $HE$, respectively. What is the ratio of the area of the shaded pentagon $AJICB$ to the sum of the areas of the three squares?

$\textbf{(A)}\hspace{.05in}\frac{1}{4}\qquad\textbf{(B)}\hspace{.05in}\frac{7}{24}\qquad\textbf{(C)}\hspace{.05in}\frac{1}{3}\qquad\textbf{(D)}\hspace{.05in}\frac{3}{8}\qquad\textbf{(E)}\hspace{.05in}\frac{5}{12}$

pair A,B,C,D,E,F,G,H,I,J;
A = (0.5,2);
B = (1.5,2);
C = (1.5,1);
D = (0.5,1);
E = (0,1)
F = (0,0);
G = (1,0);
H = (1,1);
I = (2,1);
J = (2,0); 
draw(A--B); 
draw(C--B); 
draw(D--A); 
draw(E--I); 
draw(F--E); 
draw(I--J); 
draw(J--F); 
draw(G--H); 
draw(A--J); 
label("$A$", A, NW);
label("$B$", B, NE);
label("$C$", C, NE);
label("$D$", D, NW);
label("$E$", E, NW);
label("$F$", F, SW);
label("$G$", G, S);
label("$H$", H, N);
label("$I$", I, NE);
label("$J$", J, SE);
 (Error making remote request. Unknown error_msg)

Solution

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png