1969 AHSME Problems/Problem 16

Revision as of 20:45, 30 September 2014 by Timneh (talk | contribs) (Created page with "== Problem == When <math>(a-b)^n,n\ge2,ab\ne0</math>, is expanded by the binomial theorem, it is found that when <math>a=kb</math>, where <math>k</math> is a positive integer, t...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

When $(a-b)^n,n\ge2,ab\ne0$, is expanded by the binomial theorem, it is found that when $a=kb$, where $k$ is a positive integer, the sum of the second and third terms is zero. Then $n$ equals:

$\text{(A) } \tfrac{1}{2}k(k-1)\quad \text{(B) } \tfrac{1}{2}k(k+1)\quad \text{(C) } 2k-1\quad \text{(D) } 2k\quad \text{(E) } 2k+1$

Solution

$\fbox{E}$

See also

1969 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png