1969 AHSME Problems/Problem 27

Revision as of 22:50, 30 September 2014 by Timneh (talk | contribs) (Created page with "== Problem == A particle moves so that its speed for the second and subsequent miles varies inversely as the integral number of miles already traveled. For each subsequent mile ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A particle moves so that its speed for the second and subsequent miles varies inversely as the integral number of miles already traveled. For each subsequent mile the speed is constant. If the second mile is traversed in $2$ hours, then the time, in hours, needed to traverse the $n$th mile is:

$\text{(A) } \frac{2}{n-1}\quad \text{(B) } \frac{n-1}{2}\quad \text{(C) } \frac{2}{n}\quad \text{(D) } 2n\quad \text{(E) } 2(n-1)$

Solution

$\fbox{E}$

See also

1969 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png