1973 Canadian MO Problems/Problem 5

Revision as of 16:51, 8 October 2014 by Timneh (talk | contribs) (Problem)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

For every positive integer $n$, let $h(n) = 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.

For example, $h(1) = 1, h(2) = 1+\frac{1}{2}, h(3) = 1+\frac{1}{2}+\frac{1}{3}$.

Prove that $n+h(1)+h(2)+h(3)+\cdots+h(n-1) = nh(n)\qquad$ for $n=2,3,4,\ldots$

Solution

See also

1973 Canadian MO (Problems)
Preceded by
Problem 4
1 2 3 4 5 Followed by
Problem 6