1969 AHSME Problems/Problem 1

Revision as of 16:43, 10 July 2015 by Rocketscience (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

When $x$ is added to both the numerator and denominator of the fraction $\frac{a}{b},a \ne b,b \ne 0$, the value of the fraction is changed to $\frac{c}{d}$. Then $x$ equals:

$\text{(A) } \frac{1}{c-d}\quad \text{(B) } \frac{ad-bc}{c-d}\quad \text{(C) } \frac{ad-bc}{c+d}\quad \text{(D) }\frac{bc-ad}{c-d} \quad \text{(E) } \frac{bc+ad}{c-d}$

Solution

$\frac{a+x}{b+x}=\frac{c}{d}$,

$bc+cx=ad+dx$,

$(c-d)x=ad-bc$,

$x=\frac{ad-bc}{c-d}$. The answer is $\fbox{B}$.

See also

1969 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png