1982 AHSME Problems/Problem 14
1982 AHSME Problems/Problem 14
Problem 14:
In the adjoining figure, points and lie on line segment , and , and are diameters of circle , and , respectively. Circles , and all have radius and the line is tangent to circle at . If intersects circle at points and , then chord has length
[asy] size(250); defaultpen(fontsize(10)); pair A=origin, O=(1,0), B=(2,0), N=(3,0), C=(4,0), P=(5,0), D=(6,0), G=tangent(A,P,1,2), E=intersectionpoints(A--G, Circle(N,1))[0], F=intersectionpoints(A--G, Circle(N,1))[1]; draw(Circle(O,1)^^Circle(N,1)^^Circle(P,1)^^G--A--D, linewidth(0.7)); dot(A^^B^^C^^D^^E^^F^^G^^O^^N^^P); label("", A, W); label("", B, SE); label("", C, NE); label("", D, dir(0)); label("", P, S); label("", N, S); label("", O, S); label("", E, dir(120)); label("", F, NE); label("", G, dir(100));[/asy]
Solution:
Since is 15, is 75, and , .
Now drop an altitude from to at point . , and since is similar to . . so by Pythagorean Theorem, . Thus .