2008 AMC 10A Problems/Problem 23
Problem
Two subsets of the set are to be chosen so that their union is and their intersection contains exactly two elements. In how many ways can this be done, assuming that the order in which the subsets are chosen does not matter?
Solution
Solution 1
First choose the two letters to be repeated in each set. . Now we have three remaining elements that we wish to place into two separate subsets. There are ways to do so (Do you see why? It's because each of the three remaining letters can be placed either into the first or second subset. Both of those subsets contain the two chosen elements, so their intersection is the two chosen elements). Unfortunately, we have over-counted (Take for example and ). Notice how and are interchangeable. A simple division by two will fix this problem. Thus we have:
Alternatively, after picking the two elements in both sets in ways, we can use stars and bars to assign the remaining 3 elements to the sets. There are 3 stars, and 1 bar, so there are 4 total ways of assigning the elements. Then there are ways to create the sets.
Solution 2
Another way of looking at this problem is to break it down into cases.
First, our two subsets can have 2 and 5 elements. The 5-element subset (aka the set) will contain the 2-element subset. There are ways to choose the 2-element subset. Thus, there are 10 ways to create these sets.
Second, the subsets can have 3 and 4 elements. non-distinct elements. elements in the intersection. There are ways to choose the 3-element subset. For the 4-element subset, two of the elements must be the remaining elements (not in the 3-element subset). The other two have to be a subset of the 3-element subset. There are ways to choose these two elements, which means there are 3 ways to choose the 4-element subset. Therefore, there are ways to choose these sets
This leads us to the answer:
See also
2008 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.